_

1	Sean	Cray	UC Santa Barbara	Fluctuations in low-tension lipid membranes
2	Ayelet	Benjamini	UC Berkeley	Probing bending rigidity of lipid bilayers using highly parallel Dissipative Particle Dynamics simulations
3	Aurelia	Ball	UC Berkeley	Determining the Structural Ensemble of Intrinsically Disordered Proteins using Computation and Experiment
4	TJ	Lane	Stanford University	Minimalist Models of Protein Folding
5	Greg	Bowman	UC Berkeley	A Protein's Equilibrium Fluctuations Reveal Novel Druggable Pockets
6	Milo	Lin	UC Berkeley	Protein Folding Timescales
7	Qian	Chen	UC Berkeley	Watching the motion of DNA-Au nanoparticle conjugates by graphene liquid cell EM
8	John	Chodera	Memorial Sloan- Kettering Cancer Ctr	Statistical mechanics in drug discovery: What's the prognosis?
9	Tuomas	Knowles	University of Cambridge	Secondary nucleation in protein filament growth
			Socul National	The dynamic phase transition of the attractive EA
10	Chanwoo	No	University	model in a trajectory.
10 11	Chanwoo Jason	No Goodpaster	California Institute of Technology	model in a trajectory. Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes
10 11 12	Chanwoo Jason Nathan	No Goodpaster Duff	California Institute of Technology UC Santa Barbara	model in a trajectory. Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes Additive effects on the interfacial free energy of glycine nuclei
10 11 12 13	Chanwoo Jason Nathan Kateri	No Goodpaster Duff DuBay	California Institute of Technology UC Santa Barbara Columbia University	model in a trajectory. Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes Additive effects on the interfacial free energy of glycine nuclei The influence of morphology-directing groups and torsional fluctuations on the morphology and conductance of conjugated polymers
10 11 12 13 14	Chanwoo Jason Nathan Kateri Laura	No Goodpaster Duff DuBay Lupi	University California Institute of Technology UC Santa Barbara Columbia University University of Utah	 model in a trajectory. Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes Additive effects on the interfacial free energy of glycine nuclei The influence of morphology-directing groups and torsional fluctuations on the morphology and conductance of conjugated polymers Heterogeneous Nucleation of Ice on Graphitic Surfaces: Does Wetting Improve Freezing?
10 11 12 13 14 15	Chanwoo Jason Nathan Kateri Laura David	No Goodpaster Duff DuBay Lupi Sivak	University California Institute of Technology UC Santa Barbara Columbia University University of Utah UC San Francisco	 model in a trajectory. Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes Additive effects on the interfacial free energy of glycine nuclei The influence of morphology-directing groups and torsional fluctuations on the morphology and conductance of conjugated polymers Heterogeneous Nucleation of Ice on Graphitic Surfaces: Does Wetting Improve Freezing? Nonequilibrium thermodynamics of molecular machines: optimal control and optimal response
10 11 12 13 14 15 16	Chanwoo Jason Nathan Kateri Laura David Todd	No Goodpaster Duff DuBay Lupi Sivak Gingrich	University California Institute of Technology UC Santa Barbara Columbia University University of Utah UC San Francisco UC Berkeley	 model in a trajectory. Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes Additive effects on the interfacial free energy of glycine nuclei The influence of morphology-directing groups and torsional fluctuations on the morphology and conductance of conjugated polymers Heterogeneous Nucleation of Ice on Graphitic Surfaces: Does Wetting Improve Freezing? Nonequilibrium thermodynamics of molecular machines: optimal control and optimal response Toward Dynamical Design: Path Sampling Methods for Seeking Fast Rates in Large Design Spaces
 10 11 12 13 14 15 16 17 	Chanwoo Jason Nathan Kateri Laura David Todd Dibyendu	No Goodpaster Duff DuBay Lupi Sivak Gingrich Mandal	California Institute of Technology UC Santa Barbara Columbia University University of Utah UC San Francisco UC Berkeley University of Maryland	 model in a trajectory. Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes Additive effects on the interfacial free energy of glycine nuclei The influence of morphology-directing groups and torsional fluctuations on the morphology and conductance of conjugated polymers Heterogeneous Nucleation of Ice on Graphitic Surfaces: Does Wetting Improve Freezing? Nonequilibrium thermodynamics of molecular machines: optimal control and optimal response Toward Dynamical Design: Path Sampling Methods for Seeking Fast Rates in Large Design Spaces An exactly solvable model of Maxwell's demon

19	Kevin	Haas	UC Berkeley	Dynamics Information and Trajectory Entropy for Continuous Stochastic Processes
20	John	Haberstroh	UC Berkeley	An exploration of dynamical restrictions on the formation of alignment-specific metastable states during self-assembly
21	Tom	Haxton	Lawrence Berkeley National Lab	Coarse-grained model for peptoid nanostructure assembly
22	Shachi	Katira	UC Berkeley	A grand-canonical reservoir to observe phenomena on biological membranes.
23	Alex	Hudson	UC Berkeley	Understanding Urea's Role in Protein Denaturation
24	Masaharu	Isobe	Nagoya Institute of Technology	Generalized bond order parameters to characterize transient crystals
25	Joohyun	Jeon	UC Santa Barbara	Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization
26	Kelsey	Schuster	UC Berkeley	Dynamical Heterogeneity in Proteins: Connections to Allostery
27	Glen	Hocky	Columbia University	Correlations between structure and dynamics in model supercooled liquids
			I	
28	Aaron	Keys	Lawrence Berkeley National Lab	Calorimetric glass transition explained by hierarchical dynamic facilitation
28 29	Aaron Pablo	Keys Damasceno	Lawrence Berkeley National Lab University of Michigan	Calorimetric glass transition explained by hierarchical dynamic facilitation Assembling Complex Structures from Simple Building Blocks
28 29 30	Aaron Pablo David	Keys Damasceno Limmer	Lawrence Berkeley National Lab University of Michigan UC Berkeley	Calorimetric glass transition explained by hierarchical dynamic facilitation Assembling Complex Structures from Simple Building Blocks Water exchange at the metal electrode is rare and collective
28 29 30 31	Aaron Pablo David Jeffrey	Keys Damasceno Limmer Weber	Lawrence Berkeley National Lab University of Michigan UC Berkeley Stanford University	Calorimetric glass transition explained by hierarchical dynamic facilitation Assembling Complex Structures from Simple Building Blocks Water exchange at the metal electrode is rare and collective Emergence of glass-behavior in Markov State Models of protein folding dynamics
28 29 30 31 32	Aaron Pablo David Jeffrey Jonathan	Keys Damasceno Limmer Weber Landy	Lawrence Berkeley National Lab University of Michigan UC Berkeley Stanford University UC Santa Barbara	Calorimetric glass transition explained by hierarchical dynamic facilitation Assembling Complex Structures from Simple Building Blocks Water exchange at the metal electrode is rare and collective Emergence of glass-behavior in Markov State Models of protein folding dynamics Limiting-law excess sum rule for polyelectrolytes
28 29 30 31 32 33	Aaron Pablo David Jeffrey Jonathan Laura	Keys Damasceno Limmer Weber Landy Armstrong	Lawrence Berkeley National Lab University of Michigan UC Berkeley Stanford University UC Santa Barbara UC Berkeley	Calorimetric glass transition explained by hierarchical dynamic facilitation Assembling Complex Structures from Simple Building Blocks Water exchange at the metal electrode is rare and collective Emergence of glass-behavior in Markov State Models of protein folding dynamics Limiting-law excess sum rule for polyelectrolytes Reverse engineering the caroxysome: Minimal models for the assembly of the polyhedral motifs
28 29 30 31 32 33 34	Aaron Pablo David Jeffrey Jonathan Laura Bin	Keys Damasceno Limmer Weber Landy Armstrong Li	Lawrence Berkeley National Lab University of Michigan UC Berkeley Stanford University UC Santa Barbara UC Berkeley UC Berkeley	Calorimetric glass transition explained by hierarchical dynamic facilitation Assembling Complex Structures from Simple Building Blocks Water exchange at the metal electrode is rare and collective Emergence of glass-behavior in Markov State Models of protein folding dynamics Limiting-law excess sum rule for polyelectrolytes Reverse engineering the caroxysome: Minimal models for the assembly of the polyhedral motifs A Cartesian Classical Second-quantized Many- electron Hamiltonian
28 29 30 31 32 33 34 35	Aaron Pablo David Jeffrey Jonathan Laura Bin Joshua	Keys Damasceno Limmer Weber Landy Armstrong Li Kretchmer	Lawrence Berkeley National Lab University of Michigan UC Berkeley Stanford University UC Santa Barbara UC Berkeley UC Berkeley California Institute of Technology	Calorimetric glass transition explained by hierarchical dynamic facilitation Assembling Complex Structures from Simple Building Blocks Water exchange at the metal electrode is rare and collective Emergence of glass-behavior in Markov State Models of protein folding dynamics Limiting-law excess sum rule for polyelectrolytes Reverse engineering the caroxysome: Minimal models for the assembly of the polyhedral motifs A Cartesian Classical Second-quantized Many- electron Hamiltonian Path-integral simulations of proton coupled electron transfer

37	Zhiyue	Lu	University of Maryland	Computing partition functions of crystalline solids using a natural order parameter
38	Rodrigo	Freitas	LLNL & Unicamp (Brazil)	Efficient Free Energy Calculation in LAMMPS
39	Bryan	Goldsmith	UC Santa Barbara	Evidence for a Water Catalyzed Mechanism in the Activation of Peroxide by Methyltrioxorhenium
40	Thomas	Michaels	University of Cambridge	Towards an analytical theory of virus self- assembly
41	Ryan	Mullen	UC Santa Barbara	Ion Pair Dissociation: Grote-Hynes, Pollak and Committors
42	Yuka	Nakamura	Kyushu university	Perturbation Theory of Large Particle Diffusion
43	Joe	Ostrowski	Univ. of Colorado, Boulder	Electrodoping Graphene and Tuning of Nanoscale Hydrophobicity
44	Kevin	Pilkiewicz	Univ. of Colorado, Boulder	The Blind Leading the Blind: A Minimalist Model of Flocking
45	Brenda	Rubenstein	Columbia University	Constant Stress Quantum Monte Carlo
46	Margaret	Johnson	National Institutes of Health	Evolutionary pressure on interface-interaction topology in protein-protein interaction networks
47	Anna	Schneider	UC Berkeley	Coexistence of fluid and crystalline phases of proteins in photosynthetic membranes
48	Chris	Ryan	UC Berkeley	How non-curved proteins adhered to membranes generate curvature
49	Patrick	Shaffer	UC Berkeley	Solvating ions at interfaces
50	Brian	Giera	UC Santa Barbara	Model free test for mean-field behavior
51	Bin	Song	University of Utah	Thermodynamic signatures of water-driven methane-methane attraction in coarse-grained mW water
52	Jinsuk	Song	UC Santa Barbara	Specific Ion Effects on the Local Water Diffusion at the Hydrophilic Vesicle Surface
53	Mark	Sweeney	University of Colorado	Vortices in One Dimension: A Soliton Analysis of Gapped Carbon Nanotubes
54	Dayton	Thorpe	UC Berkeley	Electric Field Fluctuations in Water

55	Ken	Tokunaga	Kogakuin University	Mechanical Work by Chemical Reaction on the Surface of Solvation Motor
56	Suri	Vaikuntanathan	UC Berkeley	Putting water on a lattice
57	Patrick	Varilly	University of Cambridge	Valency without patches: many-body effects in DNA-coated colloids
58	Jason	Wagoner	Stanford University	Finite domain simulations: Accurate potentials and flexible boundaries
59	Connie	Wang	California Institute of Technology	Understanding allosteric coupling in SRP-signal sequence recognition
60	Evan	Wang	UC Berkeley	Toward an understanding of actin network elasticity
61	Julian	Weichsel	UC Berkeley	Bottlenecks to actin-driven cell membrane protrusion
62	Mike	Webb	Caltech	Path-integral Methods for Isotope Geochemistry
63	Jeffrey	Weber	Stanford University	Functional understanding of solvent structure in GroEL cavity through dipole field analysis
64	Yoji	Kubota	Kyushu University	Fast dielectric relaxation in hydration shell around molecular-sized ion
65	Lee-Ping	Wang	Stanford University	Simple and systematic optimization of a polarizable water model
66	Bin	Zhang	California Institute of Technology	Topology of multispanning membrane proteins: Kinetics vs. Thermodynamics
67	Mahmoud	Abouelnasr	UC Berkeley	Diffusion in Confinement: Developing Faster Simulations
68	Manjan	Mannige	Lawrence Berkeley National Lab	Sequence composition modulates protein fold invention
69	Hyun-Tae	Lim	Seoul National University	ТВА
70	Hsuing-Lin	Tu	UC Berkeley	Ras activation by Son of sevenless
71	Sune	Christensen	UC Berkeley	Lipid membrane mediated dimerization of H-Ras revealed by single molecule tracking and photon statistics
72	Artur	Menzeleev	California Institute of Technology	Non-adiabatic reaction dynamics using path- integral methods