<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Institution</th>
<th>Title of poster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chen, Ming</td>
<td>UC Berkeley</td>
<td>Overlapped embedded fragment stochastic density functional theory for covalently bonded materials</td>
</tr>
<tr>
<td>2</td>
<td>Das, Akshaya</td>
<td>UC Berkeley</td>
<td>Improvements to the AMOEBA force field by introducing anisotropic atomic polarizability of the water molecule</td>
</tr>
<tr>
<td>3</td>
<td>David, Philippe</td>
<td>University of Utah</td>
<td>Representing high dimensional perovskite potential energy surfaces with artificial neural networks</td>
</tr>
<tr>
<td>4</td>
<td>Dinpajooh, Hadi</td>
<td>University of Oregon</td>
<td>Integral equation coarse-graining method: Multi-resolution simulations</td>
</tr>
<tr>
<td>5</td>
<td>DuBay, Kateri</td>
<td>University of Virginia</td>
<td>Modeling the influence of emergent behaviors among nascent oligomers on step-grown copolymer sequences</td>
</tr>
<tr>
<td>6</td>
<td>Frechette, Layne</td>
<td>UC Berkeley</td>
<td>Elastic phase behavior significantly biases the kinetics of model ion-exchange reactions</td>
</tr>
<tr>
<td>7</td>
<td>Fu, Ray</td>
<td>Northwestern University</td>
<td>Periodic driving in a two-dimensional ratchet</td>
</tr>
<tr>
<td>8</td>
<td>Galib, Mirza</td>
<td>UC Berkeley</td>
<td>Developing a reactive force field using machine learning for the decomposition of N₂O₅ in bulk water</td>
</tr>
<tr>
<td>9</td>
<td>Gao, Chloe</td>
<td>UC Berkeley</td>
<td>Nonlinear transport coefficients from large deviation functions</td>
</tr>
<tr>
<td>10</td>
<td>Hasyim, Muhammad</td>
<td>UC Berkeley</td>
<td>Statistical mechanics of crystallization and vitrification</td>
</tr>
<tr>
<td>11</td>
<td>Hocky, Glen</td>
<td>New York University</td>
<td>Mechanical and kinetic factors drive sorting of F-actin crosslinkers on bundles</td>
</tr>
<tr>
<td>12</td>
<td>Jin, Jaehyeok</td>
<td>University of Chicago</td>
<td>Ultra-coarse-graining the complex condensed matters: From interfaces to hydrogen bonding</td>
</tr>
<tr>
<td>13</td>
<td>Kedia, Hridesh</td>
<td>Massachusetts Institute of Technology</td>
<td>Dynamical fine-tuning to external forcing in disordered networks of bistable springs</td>
</tr>
<tr>
<td>14</td>
<td>Lee, Jaehak</td>
<td>Seoul National University</td>
<td>Trajectory probability and entropy of stochastic spin-lattice models</td>
</tr>
<tr>
<td>15</td>
<td>Liao, Zhenghan</td>
<td>University of Chicago</td>
<td>Rectification in non-equilibrium gyroscopic networks</td>
</tr>
<tr>
<td>16</td>
<td>Marzen, Sarah</td>
<td>Massachusetts Institute of Technology</td>
<td>Prediction and dissipation in nonequilibrium sensors</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Institution</td>
<td>Title</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>17</td>
<td>Merz, Steven</td>
<td>University of Virginia</td>
<td>Investigations of nanoparticle monolayer self-assembly:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Integrating MALDI-MS experiments with configurationally biased Monte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carlo simulations</td>
</tr>
<tr>
<td>18</td>
<td>Mullen, Ryan</td>
<td>Lawrence Livermore National</td>
<td>Spin-lattice model of plutonium hydride nucleation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Niblett, Samuel</td>
<td>UC Berkeley</td>
<td>Effects of random pinning on the potential energy landscape</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>of a supercooled liquid</td>
</tr>
<tr>
<td>20</td>
<td>Niblo, Jessica</td>
<td>University of Virginia</td>
<td>Shifting self-assembly through oscillations of inter-particle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>interactions</td>
</tr>
<tr>
<td>21</td>
<td>Park, Gyehyun</td>
<td>Seoul National University</td>
<td>Many-chain effect on the co-nonsolvency behavior of polymer brush</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in a good solvent mixture</td>
</tr>
<tr>
<td>22</td>
<td>Ruiz Pestana, Luis</td>
<td>Lawrence Berkeley</td>
<td>Accurate water properties from semilocal functionals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Laboratory</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Sanyal, Tanmoy</td>
<td>UC San Francisco</td>
<td>Coarse-grained models for protein folding and self-assembly with the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>relative entropy</td>
</tr>
<tr>
<td>24</td>
<td>Soligno, Giuseppe</td>
<td>Utrecht University</td>
<td>Understanding the formation of PbSe honeycomb superstructures by</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dynamics simulations</td>
</tr>
<tr>
<td>25</td>
<td>Suematsu, Ayumi</td>
<td>Kyushu University</td>
<td>Dependence of effective interaction between like charged colloid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>al particles on co-ion charge in an electrolyte solution:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>An analysis using HNC-OZ theory</td>
</tr>
<tr>
<td>26</td>
<td>Takatori, Sho</td>
<td>UC Berkeley</td>
<td>Active glass and buckling of bacterial colonies</td>
</tr>
<tr>
<td>27</td>
<td>Vroylandt, Hadrien</td>
<td>Northwestern University</td>
<td>Non equivalence of dynamical ensembles and emergent non ergodicity</td>
</tr>
<tr>
<td>28</td>
<td>Wagoner, Jason</td>
<td>Stony Brook University</td>
<td>The biological catch bond suppresses fluctuations in nonequilibrium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>systems</td>
</tr>
<tr>
<td>29</td>
<td>Wang, Qiaoyi</td>
<td>University of Utah</td>
<td>Responsive membranes from self-assembly of polymer-grafted nanoparticles</td>
</tr>
<tr>
<td>30</td>
<td>Widmer-Cooper, Asaph</td>
<td>University of Sydney</td>
<td>Colloidal stability of apolar nanoparticles</td>
</tr>
<tr>
<td>31</td>
<td>Wrona, Paul</td>
<td>UC Berkeley</td>
<td>Studying the classical liquid-to-gas phase transition of indirect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>excitons</td>
</tr>
<tr>
<td>32</td>
<td>Yoshimori, Akira</td>
<td>Niigata University</td>
<td>Microscopic expressions of boundary conditions in Stokes’ law</td>
</tr>
<tr>
<td>33</td>
<td>Zhang, Zhongmin</td>
<td>University of Virginia</td>
<td>Investigating how nascent oligomer geometries and spatial heterogeneities influence the sequences of step-growth copolymers</td>
</tr>
<tr>
<td>#</td>
<td>Name</td>
<td>Institution</td>
<td>Title of poster</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>-------------------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Batton, Clay</td>
<td>UC Berkeley</td>
<td>Orderphobic effect of proteins in multicomponent membranes</td>
</tr>
<tr>
<td>2</td>
<td>Chen, Ming</td>
<td>UC Berkeley</td>
<td>Unfolding hidden barriers by active enhanced sampling</td>
</tr>
<tr>
<td>3</td>
<td>Cheng, Lixue</td>
<td>California Institute of Technology</td>
<td>Transferability in machine learning for electronic structure via the molecular orbital basis</td>
</tr>
<tr>
<td></td>
<td>Sherry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cline, Peyton</td>
<td>University of Colorado Boulder</td>
<td>Mechanisms of carrier diffusion–annihilation in cadmium chalcogenide nanocrystals</td>
</tr>
<tr>
<td>5</td>
<td>Das, Avishek</td>
<td>UC Berkeley</td>
<td>Variational estimation of large deviation functions</td>
</tr>
<tr>
<td>6</td>
<td>Dasbiswas, Kinjal</td>
<td>UC Merced</td>
<td>How mechanical forces order molecular motors in the noisy interior of cells</td>
</tr>
<tr>
<td>7</td>
<td>Del Junco, Clara</td>
<td>University of Chicago</td>
<td>High chemical affinity increases the robustness of biochemical oscillations</td>
</tr>
<tr>
<td>8</td>
<td>Ekeh, Timothy</td>
<td>University of Cambridge</td>
<td>Thermodynamic cycles with active fluids</td>
</tr>
<tr>
<td>9</td>
<td>Epstein, Jeff</td>
<td>UC Berkeley</td>
<td>Equations of hydrodynamics for active Brownian particles</td>
</tr>
<tr>
<td>10</td>
<td>Fan, Zhaochuan</td>
<td>University of Utah</td>
<td>Self-assembly of heteronanocrystals</td>
</tr>
<tr>
<td>11</td>
<td>Grand Pre, Trevor</td>
<td>UC Berkeley</td>
<td>Current and work fluctuations for active Brownian particles</td>
</tr>
<tr>
<td>12</td>
<td>Helms, Phillip</td>
<td>California Institute of Technology</td>
<td>Large deviation functions via quantum tensor network methods</td>
</tr>
<tr>
<td>13</td>
<td>Jacobson, Daniel</td>
<td>California Institute of Technology</td>
<td>Sampling rate functions using a variational ansatz for rare dynamics</td>
</tr>
<tr>
<td>14</td>
<td>Johnson, Margaret</td>
<td>Johns Hopkins University</td>
<td>Modeling nonequilibrium self-assembly in the cell through reaction-diffusion simulation</td>
</tr>
<tr>
<td>15</td>
<td>Karnes, John</td>
<td>Lawrence Livermore National Laboratory</td>
<td>An atomistic approach toward modeling additive manufacturing</td>
</tr>
<tr>
<td>16</td>
<td>Kim, Jeongmin</td>
<td>California Institute of Technology</td>
<td>Lithium electroreduction at polymer-metal interfaces during battery charge process</td>
</tr>
<tr>
<td>17</td>
<td>Korol, Roman</td>
<td>California Institute of Technology</td>
<td>Principles of charge transport in DNA: From extensive simulations to neural networks</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Institution</td>
<td>Research Area</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>18</td>
<td>Lee, Sebastian</td>
<td>California Institute of Technology</td>
<td>Analytical nuclear gradients for projection-based wavefunction-in-DFT embedding</td>
</tr>
<tr>
<td>19</td>
<td>Leitold, Christian</td>
<td>UC Santa Barbara</td>
<td>Identifying a solvent coordinate for an SN2 reaction</td>
</tr>
<tr>
<td>20</td>
<td>Magdau, Ioan</td>
<td>California Institute of Technology</td>
<td>2D THz-THz-Raman spectroscopy in bromoform</td>
</tr>
<tr>
<td>21</td>
<td>Menzl, Georg</td>
<td>UC Berkeley</td>
<td>Solvent density fluctuations: A pathway to membrane fusion?</td>
</tr>
<tr>
<td>22</td>
<td>Monroe, Jacob</td>
<td>UC Santa Barbara</td>
<td>Chemical patterning of heterogeneous surfaces induces unique dynamics of hydration water</td>
</tr>
<tr>
<td>23</td>
<td>Odendahl, Nathan</td>
<td>UC Berkeley</td>
<td>Water’s surface structure dictates its interfacial properties</td>
</tr>
<tr>
<td>24</td>
<td>Rogers, Julia</td>
<td>UC Berkeley</td>
<td>Trajectory based analysis is essential for understanding lipid exchange</td>
</tr>
<tr>
<td>25</td>
<td>Rosa, Jorge</td>
<td>California Institute of Technology</td>
<td>Path-accelerated molecular dynamics: Extending simulation timescales by parallelizing in time</td>
</tr>
<tr>
<td>26</td>
<td>Rotskoff, Grant</td>
<td>New York University</td>
<td>Neural networks as interacting particle systems</td>
</tr>
<tr>
<td>27</td>
<td>Satish, Pratima</td>
<td>UC Berkeley</td>
<td>Understanding ligand ordering phase transitions on nanoparticle surfaces</td>
</tr>
<tr>
<td>28</td>
<td>Scherck, Nick</td>
<td>UC Santa Barbara</td>
<td>Integrated field-theoretic and particle simulations: Computer-aided material design</td>
</tr>
<tr>
<td>29</td>
<td>Schile, Addison</td>
<td>UC Berkeley</td>
<td>Studying rare nonadiabatic dynamics with transition path sampling quantum jump trajectories</td>
</tr>
<tr>
<td>30</td>
<td>Shushkov, Philip</td>
<td>California Institute of Technology</td>
<td>Dynamics of direct O₂ formation in hyperthermal collisions of CO₂ with a gold surface</td>
</tr>
<tr>
<td>31</td>
<td>Strong, Steven</td>
<td>University of Chicago</td>
<td>Hydrogen bonding in supercritical water</td>
</tr>
<tr>
<td>32</td>
<td>Tao, Xuecheng</td>
<td>California Institute of Technology</td>
<td>Path-integral isomorphic Hamiltonian: Including nuclear quantum effects in non-adiabatic dynamics</td>
</tr>
<tr>
<td>33</td>
<td>Welborn, Matthew</td>
<td>California Institute of Technology</td>
<td>Balancing the description of subsystems in wavefunction-in-DFT and DFT-in-lower embedding</td>
</tr>
<tr>
<td>34</td>
<td>Zimmer, Matthew</td>
<td>California Institute of Technology</td>
<td>Force transduction creates long-ranged coupling in SecM-stalled ribosomes</td>
</tr>
<tr>
<td>35</td>
<td>Cheng, Sara</td>
<td>UC Berkeley</td>
<td>Uncovering the role of pi-contacts in liquid-liquid phase separation of intrinsically disordered proteins</td>
</tr>
</tbody>
</table>